
JavaScript Interview 2022
Questions with Answers

Ianis Triandafilov

1

Contents
Functions 3

How to declare a function? 3
What are arrow functions? How do they differ from regular

ones? . 4
What is a closure? . 5
Ex. 5.1: Multiply by . 6
Ex. 5.2: What is wrong with the following code? 6
Ex. 5.3: Field reader . 7
What is an IIFE? . 7
How can we use function rest parameters? 8
Ex. 5.4: Nested HTML tree 9
Explain call, apply and bind 9

2

Functions

How to declare a function?

The first way is a “function declaration”.

function sum(a, b) {

return a + b;

}

With function declaration, we write the function keyword followed
by an obligatory name, zero or more arguments, and a function body
within the curly brackets { / } .

The function body can optionally return a value. If the returned value
is not specified, it returns undefined .

function log(str) {

console.log(str);

}

log('hello'); //=> undefined returned

Thanks to hoisting , a function declared that way can be invoked in
code before the declaration.

callme(); //=> 'Hello'

function callme() {

console.log('Hello')

}

The other way to declare a function is function expression.

We create a function and assign it to a variable. Functions in
JavaScript are first-class citizens (like any other values, they can be
passed around).

3

const sum = function(a, b) {

return a + b;

}

Unlike function declarations , function expressions don’t get
hoisted; we can’t use them before they are declared.

callme();

//=> ReferenceError: Cannot access

//=> 'callme' before initialization

const callme = function () {

console.log('Hello')

}

Function expressions also can be anonymous:

const arr = [1, 2, 3];

const multiplied = arr.map(function(x) { return x * x })

We could also create a function using the Function constructor.

const fn = new Function("return 5")

However, this is not secure (dynamical code execution) and not fast.
Declaring functions this way should be avoided.

Finally, we can create functions using the arrow syntax (() => {}).
The next question explores it in detail.

What are arrow functions? How do they differ from
regular ones?

Arrow functions were introduced in ECMAScript 6 (2015) as a compact
alternative to the regular function expression.

They have several important properties:

1. They can not be used as a constructor, and as such, they don’t
have the prototype attribute.

4

const fn = () => {}

new fn() // Uncaught TypeError: fn is not a constructor

2. They don’t track this context, and are un-bind-able:

// regular function

function fn1() {

return this

}

const obj = { hello: 'world' }

fn1.bind(obj)() // => {hello: 'world'}

// arrow function silently ignore binding

const fn2 = () => this

fn2.bind({})() // => Window

3. They don’t have access to special arguments parameter.

4. They can be used without curly braces, in which case the last ex-
pression is returned (no need to return explicitly):

[1, 2, 3].map(x => x**2) // [1, 4, 9]

// BUT! return still required when used with curly braces

[1, 2, 3].map(x => { return x**2 }) // [1, 4, 9]

5. The parenthesis can be omitted when there’s only argument (like
in the last example)

6. Unlike function declaration , they can be anonymous, and they
don’t get hoisted.

What is a closure?

Then a function is executed in a different context, it can still access
variables from the initial scope (declaration scope). This is called a
closure.

5

function counter() {

let i = 0;

return function () {

return i++;

};

}

const next = counter();

console.log(next()); // 0

console.log(next()); // 1

console.log(next()); // 2

When we call counter it creates a new binding - i . Then it creates
and returns a new anonymous function. That function can be used
outside of its initial scope, and still have access to i .

Ex. 5.1: Multiply by

Create a higher-order function multiplyBy , which takes a number
and returns a new function.

For example,

const double = multiplyBy(2);

double(5); //=> 10

const quadrouple = multiplyBy(4);

quadrouple(5); //=> 20

Go to solution →

Ex. 5.2: What is wrong with the following code?

There are three buttons with ids btn-1 , btn-2 , btn-3 . You want
each of them to alert its number when being clicked. So you write a
simple loop.

6

for (var i = 1; i <= 3; i++) {

const btn = document.getElementById(`btn${i}`)

btn.addEventListener("click", () => alert(`I'm a button #${i}`))

}

Why is this code wrong? How to fix it?

Go to solution →

Ex. 5.3: Field reader

Create a fieldReader function that takes a field name, and return a
new function that can be applied to an object.

const getName = fieldReader('name')

getName({ name: "Alice" }) //=> "Alice"

Go to solution →

What is an IIFE?

An IIFE or Immediately Invoked Function Expression is a function
that gets called right after its declaration.

(function () {

// I'm an IIFE

})()

It is primarily useful for creating a new isolated scope to not introduc-
ing any global variables (see scoping).

(function() {

// user is created within the functional scope

var user = getUser()

})()

// user is not available here

The other use-case was popular before the introductions of JavaScript

7

modules.

const counter = (function() {

var count = 0

function inc() {

count = count + 1;

return count;

}

return { inc: inc }

})();

Here we created a module with just one function without exposing the
inner variable count (encapsulation!).

How can we use function rest parameters?

Rest parameters (three dots ...) allow us to define functions with
an unspecified number of arguments.

The rest syntax converts multiple arguments into an array.

function sum(...args) {

return args.reduce((acc, el) => acc + el, 0)

}

sum(1, 2, 3) //=> 6

sum(1, 2, 3, 5, 6) //=> 17

sum() //=> 0

The sum function can now be used with any number of arguments.

The rest argument can follow after any number of normal parameters.

8

function says(name, ...words) {

console.log(`${name} says: ${words.join(" ")}`)

}

says("John", "hello", "there", "!") //=> John says: hello there !

Only the last parameter can use the rest syntax.

// invalid!

function myFunc(...firstArgs, theLastOne) { }

It’s also impossible to have multiple rest params.

// invalid!

function myFunc(...firstBatch, ...secondBatch, ...thirdBatch) { }

Ex. 5.4: Nested HTML tree

Write a function that takes multiple arguments and builds a nested
HTML tree.

Example:

tree('a', 'span')

// => <a>

tree('div', 'ul', 'li', 'a')

// => "<div><a></div>"

Go to solution →

Explain call, apply and bind

Normally we use parenthesis to invoke a function.

myFunc()

But this is not the only way.

9

Function.prototype.call() accepts a this reference, and argu-
ments.

fn.call(myObj, arg1, arg2, ...)

Function.prototype.apply() is very similar, but it accepts the argu-
ments as an array.

fn.apply(myObj, [arg1, arg2, ...])

Why would you use any of those?

One reason is when you have a function that you want to apply with
this pointing to another object.

Array.prototype.map.apply([1, 2, 3], [(x) => x * x])

The bind method returns a new function which this pointer is set
to a specified object.

const arr = [1, 2, 3]

const bmap = Array.prototype.map.bind(arr)

bmap(x => x * x) //=> [1, 4, 9]

10

	Functions
	How to declare a function?
	What are arrow functions? How do they differ from regular ones?
	What is a closure?
	Ex. 5.1: Multiply by
	Ex. 5.2: What is wrong with the following code?
	Ex. 5.3: Field reader
	What is an IIFE?
	How can we use function rest parameters?
	Ex. 5.4: Nested HTML tree
	Explain call, apply and bind

